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The exponential functiony D ex is the great creation of calculus. Algebra is all we need
for x; x2; : : : ; xn: Trigonometry leads us to sinx and cosx: But the last in this short list
of all-important functions cannot come so directly. That isbecauseex requires us, at one
point or another, to take alimit. The most important function of calculus depends on the
central idea of the whole subject : perfect for every teacher.

Still a very big question remains.How do we approachex ? That limiting step can
come in many places, sometimes openly and sometimes hidden.At the end of this note we
mention several of these approaches (the reader may know others). My chief purpose
in this paper is to advocate the choice that seems most directand straightforward. This
choice builds on what we know (the derivative ofxn), it goes immediately to the properties
we use, and it brings out the central goal of calculus : to connect functions with their rates
of change.

What we know : The derivative ofcxn is ncxn�1

Property we use : The product ofex andeX is exCX

Connection we need : The derivative of ex is ex

Calculus is aboutpairs of functions. Function1 (the distance we travel or the height
we climb) is changing. Function2 (the velocitydf =dt or the slopedy=dx) tells the rate of
change. From one of those functions, we find the other.

This is the heart of calculus, and we must not let students lose sight of it. The relation
of Function1 to Function2 is learned by examples more than by definitions, and those
great functions are the right ones to remember :

y D xn y D sinx and cosx y D ex andecx

With ex as our goal, let me suggest that we go straight there. If we hide its best property,
students won’t find it (and won’t feel it). What makes this function special ?

The slope ofex is ex

Function1 equals Function2
y D ex solves the differential equation dy=dx D y:

Differential equations are laws of change. The whole purpose of calculus is to understand
change. It is wonderful to see the most important differential equation so early, and doubly
wonderful to solve it.

One more requirement will eliminate solutions likey D 2ex andy D 8ex (the2 and8

will appear on both sides ofdy=dx D y, so the equation still holds). Atx D 0, e0 will be
the “zeroth power” of the positive numbere: All zeroth powers are1. So we wanty D ex

to equal 1 whenx D 0:
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y D ex is the solution of
dy

dx
D y that starts from y D 1 at x D 0.

Before that solution, draw what it means to havey D dy=dx: The slope atx D 0 must
bedy=dx D 1 (sincey D 1). So the curve starts upward, along the liney D 1Cx: But as
y increases, its slope increases. So the graph goes up faster (and then faster). “Exponential
growth” means that the function and its slope stay proportional.

The time you give to that graph is well spent. Once formulas arrive, they tend to take
over. The formulas are exactly right, and the graph is only approximately right. But the
graph also showse�x

D 1=ex; rapidly approaching but never touchingy D 0:

This introduction ends here, beforeex is formally presented. But a wise reader knows
that we all pay closer attention when we are convinced that a new person or a new function
is important. I hope you will allow me to presentex partly as if to a class, and partly as a
suggestion to all of us who teach calculus.

Constructing y D ex

I will solve dy=dx D y a step at a time. At the start,y D 1 means thatdy=dx D 1:

Start
y D 1

dy=dxD 1
Change y

y D 1Cx

dy=dxD 1
Change

dy

dx

y D 1Cx

dy=dx D 1Cx

After the first change,y D 1Cx has the correct derivativedy=dx D 1: But then I
had to changedy=dx to keep it equal toy: And I can’t stop there:

y 1 1Cx 1Cx C
1
2
x2 cubic

equals Ó Õ Ó Õ Ó Õ Ó
dy=dx 1 1Cx 1Cx C

1
2
x2 cubic

The extra1
2
x2 gives the correctx in the slope. Then1

2
x2 also has to go intody=dx, to

keep it equal toy: Now we need a new term with this derivative1
2
x2:

The term that gives1
2
x2 hasx3 divided by 6: The derivative ofxn is nxn�1, so I

must divide byn (to cancel correctly). Then the derivative ofx3=6 is 3x2=6 D
1
2
x2 as we

wanted. After that comesx4 divided by 24:

x3

6
D

x3

.3/.2/.1/
has slope

x2

.2/.1/

x4

24
D

x4

.4/.3/.2/.1/
has slope

4x3

.4/.3/.2/.1/
D

x3

6
:

The pattern becomes more clear. Thexn term is divided byn factorial, which is nŠ D

.n/.n�1/ : : : .1/: The first five factorials are 1;2;6;24;120: The derivative
of that term xn=nŠ is the previous term xn�1=.n�1/Š (because then’s cancel). As
long as we don’t stop, this sum of infinitely many terms does achievedy=dx D y:

y.x/ D ex
D 1Cx C

1
2
x2

C
1
6

x3
C � � �C 1

nŠ
xn

C � � � (1)

Here is the function. Take the derivative of every term and this series appears again.
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If we substitutex D 10 into this series, do the infinitely many terms add to a finite
numbere10 ? Yes. The numbersnŠ grow much faster than10n (or any otherxn). So
the terms10n=nŠ in this “exponential series” become extremely small asnÑ8: Analysis
shows that the sum of the series (which isy D ex) does achievedy=dx D y:

Note 1 Thegeometric series1Cx Cx2
Cx3

C � � � adds up to1=.1�x/: This is the most
important series in mathematics, but it runs into a problem at x D 1: the sum1C1C1C

1C � � � is infinite. The series forex is entirely different, because the powersxn are divided
by the rapidly growing numbersnŠ D n factorial.

Every termxn=nŠ is the previous term multiplied byx=n: Those multipliers approach
zero and the limit step succeeds (the infinite series has a finite sum). This is a great example
to meet, long before you learn more about convergence and divergence.

Note 2 Here is another way to look at that series forex : Start with xn and take its
derivativen times. First getnxn�1 and thenn.n�1/xn�2: Finally thenth derivative is
n.n�1/.n�2/ : : : .1/x0; which is n factorial. When we divide by that number,the nth
derivative of xn=nŠ is equal to 1: All other derivatives are zero atx D 0:

Now look atex : All its derivatives are stillex; so they also equal 1 atx D 0: The series
is matching every derivative ofex at the starting pointx D 0:

Note 3 Set x D 1 in the exponential series. This tells us the amazing numbere1
D e:

e D 1C1C
1
2

C
1
6

C
1

24
C

1
120

C � � �D 2 :71828: : : (2)

The first three terms add to2:5: The first five terms almost reach2:71: We never reach2:72:

It is certain thate is not a fraction. It never appears in algebra, but it is the key number for
calculus.

Multiplying by Adding Exponents

Is it true thate timese equalse2 ? Up to now,e ande2 come separately. We substitute
x D 1 and thenx D 2 in the infinite series. The wonderful fact is that for everyx, the series
produces the “xth power of the numbere:” Whenx D�1, we gete�1 which is 1=e:

Set x D�1 e�1
D

1

e
D 1�1C

1

2
� 1

6
C

1

24
� 1

120
C � � �

If we multiply that series for1=e by the series fore, we get1:

The best way is to go straight for all multiplications ofex times any powereX : The
rule of adding exponents says that the answer isexCX : The series must say this too. When
x D 1 andX D�1, this rule producese0 from e1 timese�1:

Add the exponents .ex/.eX / D exCX (3)

We only knowex and eX from the infinite series. For this all-important rule, we can
multiply those series and recognize the answer as the seriesfor exCX : Make a start:
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Multiply each term

ex times eX

Hoping for

exCX

ex
D 1 C x C

1

2
x2

C
1

6
x3

C � � �
eX

D 1 C XC
1

2
X2

C
1

6
X3

C � � �
.ex/.eX / D 1 C x C X C

1

2
x2

C xX C
1

2
X2

C � � � (4)

1Cx CX is the right start forexCX : Then comes1
2
.x CX/2 :

1

2
.x CX/2

D
1

2
.x2

C2xX CX2/ matches the “second degree” terms in (4).

The step to third degree takes a little longer, but it also succeeds:

1

6
.x CX/3

D
1

6
x3

C
3

6
x2X C

3

6
xX2

C
1

6
X3 matches the next terms in (4).

For high powers ofx CX we need thebinomial theorem(or a healthy trust that mathe-
matics comes out right). Whenex multiplieseX ; this produces all the products of.xn=nŠ/

times.Xm=mŠ/: Now look for that same term inside the series forexCX :

Inside
.x CX/nCm

.nCm/Š
is

�

xnXm

.nCm/Š

�

times

�

.nCm/Š

nŠmŠ

�

which gives
xnXm

nŠmŠ
: (5)

That binomial number.nCm/Š=nŠ mŠ counts the number of ways to choosen aces out of
nCm aces. Out of 4 aces, you could choose 2 aces in4Š=2Š2Š D 6 ways. There are 6 ways
to choose2 x’s out ofxxxx: This number 6 will be the coefficient ofx2X2 in .x CX/4:

In the fourth degree term, that 6 is divided by 4! (to produce1=4). Whenex multiplies
eX , 1

2
x2 multiplies 1

2
X2 (which also produces1=4). All terms are correct, but we are not

going there—we accept.ex/.eX / D exCX as now confirmed.

Second proof A different way to see this rule for.ex/.eX / is based ondy=dx D y:

Start fromy D 1 atx D 0: At the pointx, you reachy D ex : Now go an additional distance
X to arrive atexCX :

Notice that the additional part starts fromex (instead of starting from 1). That starting
valueex will multiply eX in the additional part. Soex times eX must be the same as
exCX : This is a “differential equations proof” that the exponentsare added. (Personally, I
am happy to multiply the series and match the terms.)

The rule immediately givesex timesex : The answer isexCx
D e2x : If we multiply

again byex , we find .ex/3: This is equal toe2xCx
D e3x : We are finding a rule for all

powers.ex/n
D .ex/.ex/ � � � .ex/:

Multiply exponents .ex/n
D enx (6)

This is easy to see forn D 1;2;3; : : : and thenn D�1,�2,�3,. . .It remains true for all
numbersx andn.

4



That last sentence about “all numbers” is important! Calculus cannot develop properly
without working with all exponents (not just whole numbers or fractions). The infinite
series (1) definesex for everyx and we are on our way. Here is the graph that shows
Function .1/ D Function .2/ D ex

D exp.x/:

−2 −1 0 1 2ln 2
x

e�1
D :368: : :

e D e1
D 2:718: : :

eln 2
D 2

e2
D 7:388: : : y D ex

dy

dx
D ex

e0
D 1

.ex/.eX / D exCX

.ex/n
D enx

elny
D y

The Exponentials 2x and bx

We know that23
D 8 and24

D 16: But what is the meaning of2� ? One way to get close
to that number is to replace� by 3:14 which is314=100: As long as we have a fraction in
the exponent, we can live without calculus:

Fractional power 2314=100
D 314th power of the100th root21=100:

But this is only “close” to2� : And in calculus, we will want the exact slope of the curve
y D 2x : The good way is to connect2x with ex; whose slope we know (it isex again). So
we need to connect2 with e:

The key number is thelogarithm of 2. This is written “ln2” and it is the power ofe
that produces2: It is specially marked on the graph ofex :

Natural logarithm of 2 eln 2
D 2

This number ln2 is about7=10: A calculator knows it with much higher accuracy. In the
graph ofy D ex , the number ln2 on thex axis producesy D 2 on they axis.
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This is an example where we want the outputy D 2 and we ask for the inputx D ln 2:

That is the opposite of knowingx and asking fory: “The logarithmx D ln y is theinverse
of the exponentialy D ex :” This idea is explained in two video lectures onocw.mit.edu—
inverse functions are not always simple.

When we have the number ln2; meeting the requirement2 D eln 2; we can take thexth
power of both sides:

Powers of 2 from powers of e 2 D eln 2 and 2x
D ex ln 2: (7)

All powers ofe are defined by the infinite series. The new function2x also grows expo-
nentially, but not as fast asex (because2 is smaller thane). Probablyy D 2x could have
the same graph asex , if I stretched out thex axis. That stretching multiplies the slope by
the constant factor ln2: Here is the algebra:

Slope of y D 2x
d

dx
2x

D
d

dx
ex ln 2

D .ln 2/ex ln 2
D .ln 2/2x:

For any positive numberb, the same approach leads to the functiony D bx : First, find
the natural logarithm lnb: This is the number (positive or negative) so thatb D eln b : Then
take thexth power of both sides:

Connect b to e b D eln b and bx
D ex ln b and

d

dx
bx

D .ln b/bx (8)

When b is e (the perfect choice), lnb D lne D 1: When b is en, then lnb D lnen
D n:

“The logarithm is the exponent.” Thanks to the series that definesex for every x,
that exponent can be any number at all.

Allow me to mention Euler’s Great Formulaeix
D cos x Ci sin x: The exponentix

has become animaginary number. (You know thati2
D�1:) If we faithfully use cosx C

i sinx at90� and180� (wherex D �=2 andx D �), we arrive at these wonderful facts:

Imaginary exponents ei�=2
D i and ei�

D�1: (9)

Those equations are not imaginary, they come from the great series forex :

Continuous Compounding of Interest

There is a different and important way to reache andex (not by an infinite series). We
solve the key equationdy=dx D y in small steps. As these steps approach zero (a limit is
always involved !) the small-step solutionY becomes the exacty D ex :

I can explain this idea in two different languages. Each stepmultipliesY by 1C�x:

1. Compound interest. After each step�x, the interest is added toY: Then the next step
begins with a larger amount.1C�x/Y:

2. Finite differences. The continuousdy=dx is replaced by small steps�Y=�x:

dy

dx
D y changes to

Y.x C�x/�Y.x/

�x
D Y.x/ still with Y.0/ D 1: (10)
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Let me compute compound interest when 1 year is divided into 12 months. The interest
rate is 100% and you start withY.0/ D $1: If you only got interest once, at the end of the
year, then you haveY.1/ D $2:

If interest is added every month, you now get1
12

of 100% each time (12 times). SoY
is multiplied each month by 1C 1

12
: (The bank adds1

12
for every 1 you have.) Do this 12

times and the final value $2 is improved to $2.61:

After 12 months Y.1/ D

�

1C
1

12

�12

D $2.61

Now add interest every day.Y.0/ D $1 is multiplied 365 times by 1C 1
365

:

After 365 days Y.1/ D

�

1C
1

365

�365

D $2.71 (close toe)

Very few banks use minutes, and nobody divides the year intoND31;536;000 seconds.
It would add less than a penny to $2.71. But many banks are willing to usecontinuous
compounding, the limit asN Ñ8: After one year you have $e:

Another limit gives e
�

1C
1
N

�N Ñ e D 2 :718: : : asN Ñ8 (11)

This is the same numbere as1C1C
1
2

C
1
6

C � � � from the approach that I prefer. To
match this continuous compounding withex; invest at the 100% rate forx years. Now each
of theN steps isx=N years. Again the bank multiplies at every step by 1C

x
N

: The 1 keeps
what you have, thex=N adds the interest in that step. AfterN steps you are close toex :

Another formula for ex
�

1C
x
N

�N Ñ ex asN Ñ8 (12)

Comment. I would allow this second approach into my classroom, sinceeverything
aboutex is so important. But I wouldn’t prove that it gives the sameex as the equation
dy=dx D y: Of course this is quite reasonable, since the derivative of.1C

x
N

/N is
.1C

x
N

/N�1: And equally reasonable to expect the difference equation�Y=�x D Y to
stay close tody=dx D y:
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Hairer and WannerŒ4� have compared the product
�

1C
1
N

�N
to the partial sum

1C � � �C1=N Š of the series:

N D 1 2:000 2

2 2:250 2:5

3 2:370 2:67

4 2:441 2:708

5 2:488 2:7166

6 2:522 2:71805

7 2:546 2:718253

8 2:566 2:7182787

9 2:581 2:71828152

10 2:594 2:718281801

11 2:581 2:7182818261

12 2:594 2:71828182828

One column shows the slow convergence of the discrete�Y=�x D Y to the continuous
dy=dx D y: The errory�Y is of order�x D 1=N: (This “Euler method” is still chosen
for difficult problems.) The other column has errors of order1=N Š, more like a modern
“spectral method.”

Euler himself had seen this contrast before1748, the date of his great textbookŒ2�:

Johann Bernoulli connected logarithms to exponential series in 1697 Œ1�: And by 1751,
Euler could resolve a hot debate between Bernoulli and Leibniz about the logarithm of a
negative numberŒ3�: The key was his wonderful formulaeix

D cosx C i sinx:

Third approach Authors frequently produceex by starting with2x and 3x : Those
curves have slopes proportional to2x and3x : The slope of any functionbx is proportional
to that function :

slopeD limit of
bxCh�bx

h
D bx times

�

limit of
bh�1

h

�

D Cbx: (13)

That numberC is smaller than1 for b D 2; and larger than1 for b D 3: Somewhere
between, there must be a number for whichC D 1: This reasoning produces a number
e for which the slope ofex is ex :

8



It is not right to criticize this approach on mathematical grounds. Pedagogically, I don’t
see how a student can build on it. To me, the steps from1 to 1Cx to 1Cx C

1
2
x2 are going

somewhere. We are seeing central ideas of calculus, the tangent liney D 1Cx that gives
linear approximation and the tangent parabola that gives quadratic approximation. The
motivation is clear and the correctness can be seen term by term, by using (and reinforcing)
the derivative ofxn:

An infinite series is still a big jump. But it is good to show students where we are going,
by an example that we really need and use.

The Equation dy=dx D ay

The “use” of calculus is to understand change. The first step is fromy to dy=dx (Function
1 to Function2). The next step reachesd 2y=dx2 and its meaning and importance (this can
be Function3). There is one more absolutely crucial step, to connect those functions by
equations likedy=dx D y andd 2y=dx2

D�y: These are fundamental equations of nature
and why wouldn’t we solve them?

Yes, nonlinear problems can wait for that future course on differential equations. But
the essential points are clearest for three linear equations with constant coefficients :

dy

dx
D y

dy

dx
D ay

dy

dx
D ay Cs:

The solution to the first also solves the second, after a scalechange on thex axis :

Change the interest rate to a
dy

dx
D ay is solved by y.x/ D eax (14)

The series foreax is 1Cax C
1
2

.ax/2
C � � � and we take its derivative:

d

dx
.eax/ D aCa2x C � � �D a.1Cax C � � � / D aeax (15)

The derivative ofeax brings down the extra factora: Soy D eax solvesdy=dx D ay:

This soon becomes a key example of the chain rule. And the third equation has a
constant solution�s=a to add to the exponentialsCeax :

Fourth Approach by Inverse Functions

Instead of constructingy D ex ; we could construct the inverse functionx D lny: Either way
will yield all pairs .x;y/; and the natural logarithm needs only an ordinary integration :

Invert
dy

dx
D y to

dx

dy
D

1

y
and thenx D

»
1

y
dy: (16)

Starting that integration aty D 1 gives the correct valuex D ln1 D 0: After inversion this
is y D e0

D 1: And introducingt as a dummy variable leavesx D lny D
r y

1
1
t

dt:
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Now the “limiting step” thatex always needs is in the definition of the integral. The
key propertyexeX

D exCX becomes ln.yY / D lny C lnY: This is proved directly from the
integral.

This fourth approach has its attractions. But look for the ideas that need to be
understood first:

1. The meaning of an inverse function
2. The definition of an integral
3. The chain rule forx D f �1.y/ that gave.dx=dy/.dy=dx/ D 1:

Maybe there is a way to escape that chain rule, but not the others. Soex would have to
come long after the derivative ofxn: “Early Transcendentals” will be impossible this way,
and the ideas themselves seem much more subtle.

Explicit constructions are the winners – you can say “here isthe function.”

A Personal Note

When I wrote a textbook on calculus twenty years ago, I didn’tappreciateex : Of course
it was sure to be important. But the exponential wasn’t seen as the organizing function for
differential calculus.

It was in preparing video lectures on “Highlights of Calculus” that ex moved into its
right place. Without all the details of a complete course, those videos are open to everyone
on MIT’s OpenCourseWare (ocw.mit.edu, Highlights for High School). They led to a new
edition ofCalculusand to this paper.

I hope you will feel that a stronger emphasis onex is right. And I hope that this
suggested presentation uses what students know, to go directly toward this wonderful
function at the heart of calculus and its applications.
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